jueves, 29 de mayo de 2014

reglas de derivacion

Derivada de una constante por una función

H) f es derivable en x=a
T) (kf(a))' = k.f'(a)
Demostración:
                                              f'(a)
                                         ------^------    
                 k.f(x) - k.f(a)         (f(x) - f(a))
(k.f(a))' = lim ---------------- = lim k ------------- = k.f'(a)
            x->a      x - a        x->a      x - a  
Nota:
  • El teorema anterior da el valor de la derivada en el punto a. Como a es un punto genérico, lo sustituimos por x y tenemos la función derivada:
    (kf)'(x) = k.f'(x), si f es derivable en x.

Derivada de la suma

La derivada de una suma de funciones es la suma de las derivadas de cada función.

H) f es derivable en x=a, g es derivable en x=a
T) f+g es derivable en x=a
    (f+g)'(a) = f'(a) + g'(a)
Demostración:
                (f+g)(x) - (f+g)(a)       f(x) + g(x) - f(a) - g(a)
(f+g)'(a) = lim ------------------- = lim -------------------------
            x->a      (x-a)           x->a         (x-a)
   
                f(x) - f(a)    g(x) - g(a)
          = lim ----------- + ------------ = f'(a) + g'(a)
            x->a   (x-a)          (x-a)
Notas:
  • En general (f+g)'(x) = f'(x) + g'(x), si f y g son derivables en x.
  • El teorema se extiende a más de dos funciones.

Derivada del producto

H) f es derivable en x=a, g es derivable en x=a
T) f.g es derivable en x=a
    (f.g)'(a) = f'(a).g(a) + f(a).g'(a)
Demostración:
                (f.g)(x) - (f.g)(a)       f(x).g(x) - f(a).g(a)
(f.g)'(a) = lim ------------------- = lim --------------------
            x->a      (x-a)           x->a       (x-a)

      f(x).g(x) - f(a)g(a) + f(a)g(x) - f(a)g(x)
= lim ------------------------------------------ =
  x->a                 (x-a)

             f'(a)               g'(a)
(*) g(a) -----^-----         -----^-----
    -^- (f(x) - f(a))       (g(x) - g(a))
lim g(x)------------- + f(a)------------- = f'(a).g(a) + g'(a).f(a)
x->a        (x-a)               (x-a)
(*) Pues g es derivable en a => (teorema) g es continua en a
=> (def. de continuidad) existe g(a) y limx->ag(x)=g(a).
Notas:
  • (f.g)'(x) = f'(x).g(x) + f(x).g'(x).
  • Generalización para tres funciones: (f(x).g(x).h(x))' = f'(x).g(x).h(x) + f(x).g'(x).h(x) + f(x)g(x).h'(x)

Derivada del cociente

H) f es derivable en x=a, g es derivable en x=a, g(a) distinto de 0
T) f/g es derivable en x=a
    (f/g)'(a) = (f'(a).g(a) - f(a).g'(a))/g2(a)
Demostración:
                (f/g)(x) - (f/g)(a)       f(x)/g(x) - f(a)/g(a)
(f/g)'(a) = lim ------------------- = lim ---------------------
            x->a       x - a          x->a        x - a

      f(x)g(a) - g(x)f(a) + f(a)g(a) - f(a)g(a)
= lim ----------------------------------------- =
  x->a             (x - a)g(x)g(a)

             f'(a)               g'(a)
         -----^-----         -----^-----
        (f(x) - f(a))       (g(x) - g(a))
    g(a)------------- -  f(a)-------------    g(a)f'(a) - f(a)g'(a)
lim         x - a               x - a       = --------------------
x->a ------------------------------------          g2(a)
              g(x)g(a)
               '--> g(a) (*)     
(*) Pues g es derivable en a => (teorema) g es continua en a
=> (def. de continuidad) existe g(a) y limx->ag(x)=g(a).
Nota:
  • (f/g)'(x) = (f'(x)g(x) - f(x)g'(x))/g2(x).

Derivada de la función compuesta

Regla de la cadena

H) f es derivable en x=a, g es derivable en x=f(a)
T) gof es derivable en x=a
    (gof)'(a) = g'[f(a)].f'(a)
Demostración:
                               g[f(x)] - g[f(a)]
(gof)'(a) = [g[f(x)]'(a) = lim ----------------- =
                           x->a     x - a

            g'[f(a)]        f'(a)
     --------^--------  ----^----
     g[f(x)] - g[f(a)]   f(x) - f(a)
lim ------------------ . ---------- = g'[f(a)].f'(a)
x->a   f(x) - f(a)         x - a
Nota:
  • (gof)'(x) = g'[f(x)].f'(x).
bibliografía:http://matematica.50webs.com/reglas-de-derivacion.html

No hay comentarios:

Publicar un comentario